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LElTER TO THE EDITOR 

Exact (2 + lhdimensional solutions for two discrete velocity 
Boltzmann models with four independent densities 

Henri Cornille 
Service de Physique Thkorique, CEN-Saclay, 91 191 Gif-sur-Yvette, Cedex, France 

_ _ .  
tial variables, relaxing towards non-uniform Maxwellian equilibrium states with two 
exponential variables. These are also solutions of another model with four independent 
densities and eight velocities oriented towards the eight corners of a cube. The positivity 
problem for the densities is non-trivial. 

There is a continuous interest in the study of the discrete Boltzmann models, where 
the velocities can only take the discrete values U,, I U , ~  = 1, because people hope to find 
useful results for both kinetic theory and fluid mechanics. Since the popular Broadwell 
[ l ]  model many others have been proposed [2]. To each velocity ul is associated a 
density N ,  and for the N ,  with two coordinates x, y we must consider models with 
velocities in a plane or in a three-dimensional space. 

The simplest solutions in one, two or three coordinate variables are the similarity 
shock waves. These are rational solutions with one exponential variable. I t  has recently 
been understood [3] that the (1 + 1)-dimensional (space x, time t )  solutions are simply 
the sums of two such similarity waves and four classes of solutions were found: (i) 
(1 + 1)-dimensional shock waves [3], (i i)  periodic solutions in space [3] propagating 
when the time is growing, ( i i i )  periodic non-propagating solutions [3-61, (iv) densities 
NI not relaxing towards constant Maxwellians [7]. 

For the (2+1)-dimensional solutions (space x, y ,  time t ) ,  although solutions of 
type ( i )  and ( iv)  have been obtained, only for class (iv) has the positivity problem of 
the N,  been entirely overcome. We present such positive solutions here. 

We consider the square [2,8] velocity model, sometimes attributed to Maxwell, 
with U,, u3 along the positive x and y axis, uI + u2 = u3 + u4 = 0, leading to the equations: 

NI, + NI, = N2, - N2, = -N3, - N3,, = -N4, + N4,. 

= a N , N 4 - N l N 2  a > 0.  (1) 
Equivalent equations are valid for a cubic [2] model with eight velocities oriented 
towards the eight corners of a cube and with four independent N I (  N6 = N I ,  N5 = N 2 ,  
N8 = N3, N7 = N4) 

NI, + NI, + NI, = N2, - NZy - Nzx = -N3, - N3" + N31[ 

=-N4r+N4y-N4x=aN3N4-NIN2 (1') 

which are reduced to (1) with the change x + y = 2X, y - x = 2 Y. 
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For (1) the total mass M = X  NI ( i  = 1, .  . . , 8  for (1')). Both mass and momentum 
conservation laws hold. For instance M ,  + d J ( , , + a J , , ,  = 0 with momentum com- 
ponents J ( r )  = N I  - N 2 ,  J ( y )  = N 3  - N 4 .  For a > 0 but a # 1, microreversibility is vio- 
lated. Introducing [8] the relative entropy H =I; NI log( N , / a , ) ,  a, > 0, ala2 = aly3a4 
we find from (1) as usual H, +a,. . .+a,. . . S 0. The similarity shock waves are 

(2) NI = no, + n,D-' D = 1 + d exp(yx+Ty+pt) 

no,, n,, d, p, y, T being constants. The (2+1)-dimensional solutions are simply the 
superposition of such solutions: 

N,  = no, + X,n,,D;' D, = 1 + d, exp( y,x + TJy + p,t) (3) 

with J = 1,2 ,3  if the components are real while j = 1,2,3,4 if the components are two 
by two complex conjugate and build periodic solutions. 

We substitute (3) into (1) and write that the coefficients of the D,-', DJ-*, constant, 
( D , D ~ ) - ~ ,  m # p ,  terms are zero: 

"1 1 ( + 'Y, ) = n,2( -. 7, ) = - n,3( p, + T, ) = n ~ 4 (  - ) = n,4 - I ",2 

= -a ( n03 n,4 + + "12 + "1 1 

n01n02 = an03n04 a(np3nm4+ n p 4 n m 3 )  = n p l n m 2 +  n p 2 n m 1  p # m. (4) 

There exist 32 parameters and 3 1 relations for the periodic solutions j = 1, . . . ,4. For 
the sum of three j th  components, the number of parameters and relations is 25 and 
19. In this last case, with at most six arbitrary parameters, we have numerically solved 
the system (4). Only for one subclass (non-uniform Maxwellians) have we entirely 
overcome the positivity problem for the N , .  This problem becomes simpler because 
onej th  component, only t dependent, does not enter into the discussion. The positivity 
problem is reduced to a positive superposition of two components. 

Subsequently we limit the study to N,(x, y,  t )  with non-uniform Maxwellians 
N?(x ,  y ) .  In (3) the two first components are t independent ( p ,  = p r  = 0) while the 
third one is t dependent ( -y3 = T~ = 0). From (4) we find n,l + n,z = nJ3 + nJ4 = 0, j = 1,2; 
n31= n 3 2  = - n 3 3  = -n34 and in (3): 

N F  = no, + n,, D ; ' +  n 2 1  0;' N,"=n03+nl3D;'+n,3D;'  

N,M + N Z ,  = no, + n o l + l  i = l , 3  OJ = + exp( yJx + 7,.v) 
N ,  - N ;" = N~ - N," = P D - I  N3 - N," = N4- N," = -pD-' 

D = 1 + d exp( pt) .  ( 5 )  

For the third t-dependent component (in (5) we have put p3 = p, n3, = p ) ,  the 
remaining constraints (4) on the parameters being 

p = p ( a  - 1 ) =  Un,+ ,+n; l  n: = no, F "0, a Z 1  ( 6 )  

p and p can be deduced once the no, are known. For N Y  > 0, we necessarily have 
no, > 0 and in ( 6 ) ,  p > 0. Consequently lim pD-' = 0 when t + CO; choosing d > 0 large, 
pD-l < p (  1 + d ) - '  can be arbitrarily small for f 2 0 and for the study of N,  > 0 we can 
restrict tb N ?  > 0. Here a # 1 while a = 1 will be allowed for the N Y .  We notice 
that this time-dependent component does not give supplementary constraints on the 
N r  parameters (a  property not true in general [3,7]). 
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In the following, we determine the twelve no, ,  n, , ,  n,,, y,, T,, j = 1,2, of the 
non-uniform Maxwellians and find sufficient conditions for the positivity. The results 
being analytical, the reader can check that positive (2 + 1)-dimensional solutions exist. 
There remains in (4) eight independent relations: 

-7, = y J n , l / n , 3 = - a n ~ 3 + n , , n ~ , / n , 3 = - a n , 3 + n , 2 , / n , 3  j = l , 2  (7)  

a n 1 3 n 2 3 =  n l l n 2 1  an03n04 = (8) 

From the n, , ,  n,, we can deduce the y,, 7,. Furthermore, taking into account the 
condition 7 , ~ ~  # 7 , ~ ~  (y,x + 3 y  must span a two-dimensional space) into (7),  then the 
quadratic relations between n,,, no, become linear: 

n , ,  + n2,  + no, = no ,+ ,  i = 1,3. (9) 

Finally, putting aside y,, T,, we have eight parameters and four relations (8) and (9), 
leaving four arbitrary parameters chosen to be ( n o , ,  no, ,  nO3,  n i l )  and we must find the 
four others (no4, n, ,  , n I 3 ,  n 2 3 )  so that N y  > 0. The algebraic determination is simple: 
(8) and (9) give no4, n 2 ,  and both the sum and the product of n l 3 ,  n 2 3  lead to two 
possible determinations for 1113, n 2 3 :  

2 ~ * =  no4- no3+dA A =  ( n 0 4 - n 0 3 ) 2 - ~ ~ , l n 2 , / ~  n13 = Z= n 2 3  = zT. 
(10) 

The non-trivial problem is the positivity one. Taking into account D,-' 3 1 in ( 5 ) ,  
sixteen constraints are sufficient for N ;  > 0: 

no, > 0 no# + z J = l , 2 n ] !  > O  no, + " / I  > i = l ,  . . . ,  4;  j = l , 2 .  (11) 

Our assumptions on the arbitrary parameters, sufficient for (1 l ) ,  are 

no, > 0 i = 1,2,3 (12a) 

O <  n , ,  < no,< no,.  (12b) 

From (8)-(12a), no4>O and the first four (11) conditions are satisfied. Recalling 
n,, + nI2 = n,, + nI4 = 0 ,  the four following ones in (11) are consequences of (9). It  
remains for the last eight ones in (11) to be rewritten: 

- n o ,  < "1, < n o , + ,  j = l , 2 ;  i = l , 3 .  (11') 

The inequalities (11') for n , ,  is a consequence of the assumption (12a), while from 
(9) the n,, ones are then deduced. We rewrite (10): 

no4- z* = no,+ z T  = ( n o , +  n o 4 T d A ) / 2 .  (10') 

Then all the last (11') inequalities for n I 7 ,  n 2 3  are satisfied if the last term in (10') is 
positive or dA < no,+ n04. For this ultimate result ensuring N y  > 0, we first notice 
that, due to (9)-(126), n, ,  < 0 or A > 0 and real z exist in  (10). Second we establish 
a set of inequalities: - n , , n 2 ,  = n , , ( n , ,  - no,+ n o , )  < n, ,n , ,  < n02nOl + - n 2 , n , , / a  < 
nO3no4+ A < (no,+ no4)2 (see table 1 for a summary of the results). 

In conclusion, N ? ( x ,  y )  > 0 and in (2+ 1) dimensions N , ( x ,  y ,  t )  > 0 exist. Further, 
for the N y ,  the a > 0 parameter does not enter the assumption (12a, b) and the 
algebraic determination is valid for U = 1. These Maxwellians exist whether the microre- 
versibility is violated or not. In table 1, we give the values for n , ,  = no3 = 1, no, = 2, 
no, = 3 .  
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Table 1. Parameters for N Y ,  N ,  equation ( 5 ) .  

General results: free parameters no, ,  i = 1 , 2 , 3 ;  nil 

N Y :  nw= n,,no2(ano,)-1 n21 = “ o Z - ~ I l - ” o l  

22” = nM- n o 3 * [ ( n M -  no3)* - 4 n , l n , , / a ] ” z  

n:, = no, f no, 7, = a n ; 3 - n ~ l n , I / n , ,  y, = -r,n,,/n,, j =  1, 2 

N , :  a # 1 p = an&+ n;, p = p / ( a  - 1 )  

Example: no3 = n , ,  = 1 

N y :  n M = 6 / a  nzl = - 2  2z’=-1+6/a*[ (1-6/a)2+8/a]”2 

y ,  = - 1  + z * ( a  - 6 )  

y z  = ~ ‘ ( 6 -  a ) / 2 -  1 

N , :  a # 1 

no2 = 2 nol = 3 

rl  = 6 - a +  I/z’ rz = 6 - a - 2/ z1 

p = 1 1  + a  p = ( I 1  + a ) / ( a -  1 )  

While the total masses M M  and M are constants for both the non-uniform 
Maxwellian and the exact solution, in contrast the momentum J M  and J are non- 
uniform in the space: 

M = M M = Z n o ,  J ( x )  = J E ,  = nol - no2+2Zn,,D;’ 

J ( , ) = . f : ) =  no3-flo4+Zn,3D,-’. (13) 
Linearising around the non-uniform Maxwellians (5)-(  12a, b )  and assuming small 

t-dependent perturbations, an exact iinearised solution exists. We define N f  = 
N y  + 6N,, SN, = 6, exp(pt), substitute into ( 1 )  and find at the linear approximation 
level: 6, = 6* = -a3 = -a4 while p = - [ a (  no3 + no4) + no, + no2] is a negative eigenvalue. 

Finally we notice the existence of another class of non-uniform Maxwellians which 
are periodic in x but not in y. Starting with 

N f l =  no,+2 Re(nIR+in,,)D-’ 

D = l + d  exp[( . rR+i~,)y+iyIx]  

(subscripts R and I for real and imaginary parts) and substituting into ( 1 )  we find 

NIM + N 2 ,  = no, + no,,, i = l , 3  
(14) 

n ly=  - n 3 T =  -an:+ fli= -Un3fl,+n1n;, aln,12 = ln112 
(15 )  

uf103n04= 

For the resolution we define n, /n3  = & exp(iz) and find 

cos z = n;l(J;;n,)-’  T R  = [ ( ?I 43 ) 2a - ( ;I 21/ n 43 (16a) 

There are three arbitrary parameters, chosen to be no, > 0, i = 1,2,3; then no,> 0 is 
given by ( 1 9 ,  we require lcos zI < 1 in (16a) and trivial calculations lead to the solution: 

N y  = no, + n i l  Re( 1 + itg z )D-’  

D = 1 + d  exp T R  

N,” = no3 + ni3  Re D-’ 
(166) 

In order to avoid poles for the NI (or zeros for D ) ,  we must limit the solutions to 
half-planes, i.e. x and semi-axis y > 0 or CO such that either [dl exp TO > 1 (for TU 3 0) 
or < 1  (TRY S 0). Choosing /dl  sufficiently large in the first case and sufficiently small 

[ y (  1 - i cot 2) +ix(sin Z)-’U-’’~]. 
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in the second, one can show that the positivity of the N, is satisfied in these half-planes. 
These positivity results come from the fact that lim N, = no, when Id/ + CO while when 
Id[+O, lim N , = n o , + , ,  i =  1,3 ,  and lim N , = n o , - , ,  i = 2 , 4 .  For instance, N , >  
no, - ln;31/(1dl- l ) ,  j = 3 , 4  in the first case while in the second case N 3 >  no3 if n i 3  > 0 
and N 3 > n 0 , - ( n 0 , - n O , ) / ( l - I d 1 )  if n i 3 < 0 .  

A first class of positive exact (2 + 1)-dimensional solutions (here relaxing towards 
non-uniform Maxwellians) has been constructed for the first time. It seems worth 
comparing these Maxwellians (see also [2]) with the equivalent ones in one spatial 
dimension [7]. For the planar models with microreversibility satisfied, they do not 
exist when the number of velocities is less than ten; the result implying that we need 
sufficient degrees of freedom for their existence. Here, adding one spatial coordinate 
(another way to open new degrees of freedom) they still exist for the square model. 
For the macroscopic total mass and momentum associated with their time-dependent 
solutions, they were constants in 1 + 1 dimensions while here the momentum is non- 
uniform in space. I hope to be able to tackle the positivity difficulty so that other 
classes could be obtained. 

References 

[ l ]  Broadwell J E 1964 Phys. Fluids 7 1243 
[2] Harris S 1966 Phys. Fluids 9 1328 

Gatignol R 1975 Lectures in Physics vol 36 (Berlin: Springer) 
Hardy J and Pomeau Y 1972 J.  Math. Phys. 13 1042 
Hardy J ,  Pomeau Y and De Pazzis 0 1973 J.  Math. Phys. 14 1746; 1976 Phys. Rev. A 13 1949 
Cabannes H 1978 J.  Me'can. 17 1 ;  1980 Lectures Notes at Berkeley 
lllner R 1979 Math.  Meth. Appl. Sci. 1 187 
McKean 1975 Comm. Pure Appl. Math. 28 435 
Ruijgrok T and Wu T T 1984 Physica l l 3 A  401 
Platkowski T 1984 Mech. Res. Comm. 11 201 

[3] Cornille H 1987 J.  Phys. A: Math. Gen. 20 1973; 1987 J.  Math.  Phys. 28 1567; 1987 J.  Stat. Phys. 48 789 
[4] Bobylev A 1983 Math. Congr. Warsaw 
[5] Wick J 1984 Math. Mefh. Appl. Sci. 6 515  
[6] Cabannes H and Tiem D M 1987 C. R. Acad. Sci. Paris 304 29; 1987 J.  Stat. Phys. to be published 
[7] Cornille H 1987 C. R. Acad. Sci. Paris 304 1 0 9 1 ;  1987 Preprint Saclay Pht/87-080 
[8] Tartar L 1975 Se'minaire Goulaouic-Schwartz no 1 


