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LETTER TO THE EDITOR

Exact (2 + 1)-dimensional solutions for two discrete velocity
Boltzmann models with four independent densities

Henri Cornille
Service de Physique Théorique, CEN-Saclay, 91191 Gif-sur-Yvette, Cedex, France

tial variables, relaxing towards non-uniform Maxwellian equilibrium states with two
exponential variables. These are also solutions of another model with four independent
densities and eight velocities oriented towards the eight corners of a cube. The positivity
problem for the densities is non-trivial.

There is a continuous interest in the study of the discrete Boltzmann models, where
the velocities can only take the discrete values v;, |v;|] =1, because people hope to find
useful results for both kinetic theory and fluid mechanics. Since the popular Broadwell
[1] model many others have been proposed [2]. To each velocity v; is associated a
density N, and for the N; with two coordinates x, y we must consider models with
velocities in a plane or in a three-dimensional space.

The simplest solutions in one, two or three coordinate variables are the similarity
shock waves. These are rational solutions with one exponential variable. It has recently
been understood [3] that the (1+1)-dimensional (space x, time ¢) solutions are simply
the sums of two such similarity waves and four classes of solutions were found: (i)
(1+1)-dimensional shock waves [3], (ii) periodic solutions in space [3] propagating
when the time is growing, (iii) periodic non-propagating solutions [3-6], (iv) densities
N; not relaxing towards constant Maxwellians [7].

For the (2+ 1)-dimensional solutions (space x, y, time ¢), although solutions of
type (i) and (iv) have been obtained, only for class (iv) has the positivity problem of
the N, been entirely overcome. We present such positive solutions here.

We consider the square [2, 8] velocity model, sometimes attributed to Maxwell,
with v, v; along the positive x and y axis, v, + v, = v, + v, = 0, leading to the equations:

N+ Nix=Ny =Ny, =—N;, - N3y = _N4I+N4y
=aN3N4_N|N2 a>0. (1)

Equivalent equations are valid for a cubic [2] model with eight velocities oriented
towards the eight corners of a cube and with four independent N;(N,= N,, Ns=N,,
Ng=N;, N;=N,)

NII+N1y+N1x=NZI_NZy—N2x=_N31_N3,V+N3x
=—N4yu+ N, — Nye=aN;N,— NN, (1)
which are reduced to (1) with the change x+y=2X, y—x=2Y.
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For (1) the total mass M =3 N, (i=1,...,8 for (1'}). Both mass and momentum
conservation laws hold. For instance M,+3.J,,+48,J(,,=0 with momentum com-
ponents J ., = N,— N,, J,,= N;— N,. For a>0 but a # 1, microreversibility is vio-
lated. Introducing (8] the relative entropy H =X N, log(N,/ a;), &;> 0, a2, = aa;a,
we find from (1) as usual H,+4,...+d,...<0. The similarity shock waves are

N, =ng+nD™! D=1+d exp(yx+71y+pt) (2)

ny;, m;, d, p, v, T being constants. The (2+1)-dimensional solutions are simply the
superposition of such solutions:

N, =no, +En;D;" D;=1+d; exp(yx+7y+p;t) (3)

with j =1, 2, 3 if the components are real while j =1, 2, 3, 4 if the components are two
by two complex conjugate and build periodic solutions.

We substitute (3) into (1) and write that the coefficients of the D', Df, constant,
(D,D,)”', m# p, terms are zero:

ni(pi+y) =np(p; - Y) = —nis(p+ 1) = nal7,— p)) = anjsne— nyny,
=—a(nynjs+ n04"13) + oy Nyt Ny
N1 Nox = QN3 Moy a(ny3ngy,,+ np4nm3) =Ny Nppt NpoNpyy p#Fm. (4)

There exist 32 parameters and 31 relations for the periodic solutions j=1,...,4. For
the sum of three jth components, the number of parameters and relations is 25 and
19. In this last case, with at most six arbitrary parameters, we have numerically solved
the system (4). Only for one subclass {non-uniform Maxwellians) have we entirely
overcome the positivity problem for the N;. This problem becomes simpler because
one jth component, only t dependent, does not enter into the discussion. The positivity
problem is reduced to a positive superposition of two components.

Subsequently we limit the study to N(x, y,t) with non-uniform Maxwellians
NM(x, y). In (3) the two first components are ¢ independent (p, = p,=0) while the
third one is ¢t dependent (y; = 7, =0). From (4) we find n;; + nj,=n;;+n,=0,j=1,2;
Ry, = N3 = —H33= —n3, and in (3):

NM=ng +n,D7'+ny D5’ NY =no+n;Dy'+nyuD3!

NM+NM =ng+ng, i=1,3 D;=1+exp(yx+7y)
Ny=NM=N,-N¥=pD"" N;— N} =N,-N}"=-pD™"

D=1+d exp(pt). (5)

For the third t-dependent component (in (5) we have put p;=p, n;, =p), the
remaining constraints (4) on the parameters being

p=pla—1)=ang+n3, ";"—'no.':’:"o,' a#l (6)

p and p can be deduced once the n, are known. For NY >0, we necessarily have
no; >0 and in (6), p > 0. Consequently lim pD~' =0 when t - c; choosing d > 0 large,
pD7'<p(1+d)"" can be arbitrarily smail for t=0 and for the study of N,>0 we can
restrict to N >0. Here a =1 while a =1 will be allowed for the NM. We notice
that this time-dependent component does not give supplementary constraints on the
N} parameters (a property not true in general [3, 7]).
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In the following, we determine the twelve no;, n;,, ns, ¥, 7, j=1,2, of the
non-uniform Maxwellians and find sufficient conditions for the positivity. The results
being analytical, the reader can check that positive (2 + 1)-dimensional solutions exist.

There remains in (4) eight independent relations:
—_— _— —_ 2 .
=T =Y,/ ny=—ang+ "jlnzl/njs—_a"js+"jx/"jz j=1,2 @)
an,3ny; = Ny Ny, QANp3Nos = Ny Nos - (8)

From the n;;, n;; we can deduce the y;, ;. Furthermore, taking into account the
condition vy, 7, # ¥,7, (y;x+ 7,y must span a two-dimensional space) into (7), then the
quadratic relations between n;, n,; become linear:

Nyt o+ ng =ngin i=1,3. 9

Finally, putting aside v;, 7;, we have eight parameters and four relations (8) and (9),
leaving four arbitrary parameters chosen to be (ny,, ng,, nos, ny,) and we must find the
four others (g4, Ny1, M3, Ny3) so that N > 0. The algebraic determination is simple:
(8) and (9) give ngs, ny; and both the sum and the product of n,;, n,; lead to two
possible determinations for n,;, ny;:

2z = ngy—ng; VA A=(n04—n03)2—4n“n21/a 3=z ny=z".
(10)

The non-trivial problem is the positivity one. Taking into account D;' =1 in (5),
sixteen constraints are sufficient for N¥ >0:

ne; >0 N+ 2,4 2m; >0 ne; +n; >0 i=1,...,4, j=12. (1)
Our assumptions on the arbitrary parameters, sufficient for (11), are
ng; >0 i=1,2,3 (12a)
0< ny, < ng < ng,. (12b)

From (8)-(12a), no,>0 and the first four (11) conditions are satisfied. Recalling
ny+n,=n;+n,=0, the four following ones in (11) are consequences of (9). It
remains for the last eight ones in (11) to be rewritten:

—no; < 0 < Ngiey j=1,2;, i=1,3. (119

The inequalities (11') for n,, is a consequence of the assumption (12a), whiie from
(9) the n,, ones are then deduced. We rewrite (10):

"04_Zi="03"“2::(”034’"04;‘/53)/2- (10")

Then all the last (11') inequalities for n,;, n,; are satisfied if the last term in (10') is
positive or vA < ng;+ ng,. For this ultimate result ensuring N >0, we first notice
that, due to (9)-(12b), n,, <0 or A>0 and real z exist in (10). Second we establish
a set of inequalities: —n  nyy=n,(n,— 1+ ny)<nng <nghy=>—n,n,/a<
Ro3fos = A< (ny3+ ng,)” (see table 1 for a summary of the results).

In conclusion, N (x, y) >0 and in (2+ 1) dimensions Ni(x, y, t) >0 exist. Further,
for the NM, the a>0 parameter does not enter the assumption (12q, b) and the
algebraic determination is valid for a = 1. These Maxwellians exist whether the microre-
versibility is violated or not. In table 1, we give the values for n,, = ng; =1, ng, =2,
N, = 3.
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Table 1. Parameters for N, N, equation (5).

General results: free parameters n,y,, i =1,2,3; n,,

M. _ -1 e
N ngs = ngynpa(ang) Ny = Roa = Ny — Aoy

2 12
22% = ngy = ngy £ [(ngs = ngy)* —dnyynyy/alY

ny = ng, T N, T, =ang; = nyn,/n; Y, =18,/ 0, j=12
Nia#1 p=ang+n3, p=p/la-1)

Example: ng;=n,;; =1 ngy =2 ng =3

NM:ny,=6/a Ny =-2 2z =-1+6/ax[(1-6/a)*+8/a]"?
v, =—1+z%(a—6)

y,=z%(6-a)/2—-1 rn=6-a+1/z* ,=6—a-2/z%

N a#l p=11+a p={(11+a)/(a-1)

While the total masses M™ and M are constants for both the non-uniform
Maxwellian and the exact solution, in contrast the momentum J™ and J are non-
uniform in the space:

M=MM=EnO‘. J(X)=J(A1)=nOl_n02+22nle;]
J(y)zjx)z'”03'“”044'2",-31);1. (13)

Linearising around the non-uniform Maxwellians (5)-(124, b) and assuming small
t-dependent perturbations, an exact linearised solution exists. We define Ni=
NM+8N,, 6N, =8, exp(ut), substitute into (1) and find at the linear approximation
level: 8, =8,=—8;=—48, while u = —[a(ng; + nes) + ny, + ng,] is a negative eigenvalue.

Finally we notice the existence of another class of non-uniform Maxwellians which

are periodic in x but not in y. Starting with

N¥=n,+2Re(ng+iny,)D™" NY+NM =ng+n, i=1,3 (14)
1

D=1+d exp[(rg+i7)y +iyx]

(subscripts R and I for real and imaginary parts) and substituting into (1) we find

nl‘)’=‘"37=_fmg"“"f:_a"s";s"""l"z-l a|"3|2=["112 (15)
QANg3Nogg = Noy No; .

For the resolution we define n,/n;=+va exp(iz) and find
cos z=ny(Vang)™ Tr=[(ns)’a—(n21)*)/ ni. (16a)

There are three arbitrary parameters, chosen to be ng; >0, i =1,2,3; then ny, >0 is

given by (15), we require |cos z| < 1in (16a) and trivial calculations lead to the solution:
NY=ny +n3 Re(1+itgz)D™! NY=ny+npRe D™ (16b)
16
D=1+dexp [y(1—icot z)+ix(sin z)"'a™"/?).

In order to avoid poles for the N; (or zeros for D), we must limit the solutions to
half-planes, i.e. x and semi-axis y > 0 or <0 such that either |d| exp Try > 1 (for 7ry =0)
or <1 (7qy =<0). Choosing |d| sufficiently large in the first case and sufficiently small



Letter to the Editor L1067

in the second, one can show that the positivity of the N, is satisfied in these half-planes.
These positivity results come from the fact that lim N, = ny; when |d|> c while when
|d|->0, lim N;=ngy4,, i=1,3, and lim N,=no,_,, i=2,4. For instance, N,>
no: —|nal/(|d]—1), j =3, 4 in the first case while in the second case N;> ny, if n33>0
and N3 > ng; —(ng; — nos)/ (1-1d}) if ng3<0.

A first class of positive exact (2+ 1)-dimensional solutions (here relaxing towards
non-uniform Maxwellians) has been constructed for the first time. It seems worth
comparing these Maxwellians (see also [2]) with the equivalent ones in one spatial
dimension [7]. For the planar models with microreversibility satisfied, they do not
exist when the number of velocities is less than ten; the result implying that we need
sufficient degrees of freedom for their existence. Here, adding one spatial coordinate
(another way to open new degrees of freedom) they still exist for the square model.
For the macroscopic total mass and momentum associated with their time-dependent
solutions, they were constants in 1+1 dimensions while here the momentum is non-
uniform in space. I hope to be able to tackle the positivity difficulty so that other
classes could be obtained.
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